• 机器学习泰斗迈克尔 · 乔丹:不是什么都叫AI的

    2021-04-01 16:23:03 | 热度:

  •  在可预见的未来,计算机对现实世界进行抽象推理的能力还无法匹敌人类。

    编者按:本文来自微信公众号“机器之心”(ID:almosthuman2014),选自IEEE Spectrum,作者:Kathy Pretz,编辑:小舟、张倩;

    「人工智能系统还远远不够先进,无法在涉及推理、运用现实世界知识和社交互动等许多任务中替代人类。」机器学习先驱迈克尔 · 欧文 · 乔丹(Michael I.Jordan)说道。

    迈克尔 · 欧文 · 乔丹是机器学习领域的权威之一、IEEE Fellow,他为无监督机器学习的发展做出了突出贡献。2016 年,乔丹被《Science》评为「全世界最有影响力的计算机科学家」。他指出:模仿人类的思维并不是机器学习的唯一目标,或者说不是最好的目标。相反,机器学习可以通过对大型数据集进行详尽的分析来提高人类的智能水平,就像搜索引擎能够通过组织 Web 来扩展人类的知识一样。

    机器学习还可以汇总多个数据集的信息,探索模式,并为一些问题提出新的解决方案,从而在医疗、商业、交通等多个领域为人类提供新型服务。

    乔丹说:「人们在讨论技术趋势时,AI 的含义令人困惑。AI 被认为是计算机中存在的一种智能能力,这种能力让科技取得进步,并且能够与人类相媲美,但事实并非如此。」

    近年来,乔丹一直致力于帮助科学家、工程师等 AI 从业者理解机器学习的完整范围。

    乔丹指出:机器学习的发展让一个新的工程学领域涌现。机器学习建立在计算机科学、统计学和控制理论数十年的发展基础上,它是第一个以人为中心的工程领域,专注于人与技术之间的接口。

    他说:「虽然关于人工智能和超级智能的科幻小说很有趣,但它们却分散了人们的注意力。人们对于真正的问题没有足够的关注,建立基于机器学习的 planetary-scale 系统才是真正有意义的工作,对人类有价值,同时不要放大不平等现象。」

    新的改变

    乔丹出生于 20 世纪 60 年代,他对哲学、文化观以及思维方式的研究很感兴趣。英国逻辑学家伯特兰 · 罗素的自传让他受到启发,开始研究心理学和统计学。罗素将思维视为一种逻辑数学过程。

    乔丹说:「将思维视为逻辑过程,并意识到计算机基于软件和硬件的逻辑实现,我理解了思维的奥秘。我认为哲学可以从关于思维和大脑的模糊讨论转变为更具体的算法和逻辑层面的讨论。虽然我对机器学习很感兴趣,但我很早就意识到理解更深层的学习需要统计学、信息论和控制论中的基础知识。」

    2003 年,乔丹和他的学生开发了隐含狄利克雷分布(latent Dirichlet allocation,LDA),这是一种主题模型,它可以将文档集中每篇文档的主题按照概率分布的形式给出,同时它是一种无监督学习算法。该方法让计算机(而不是用户)自己从文档中发现模式和信息,是最受欢迎的主题建模方法之一,用于发现隐含的主题并将文档分类。

    【分享】

  • 联系方式

    中国 - 深圳

    深圳市前海深港合作区前湾一路1号A栋201室

    商务联系:Business@joway.com

    All Posts
    ×